salju

Selasa, 16 April 2013

1

UJI KUALITATIF KARBOHIDRAT

I. PENDAHULUAN

               Karbohidrat merupakan senyawa karbon,hidrogen dan oksigen di alam. Mempunyai rumus CH2O. misalnya glukosa C6H12O6( 6 kali CH2O). Karbohidrat sebenarnya adalah polihidroksialdehida dan keton ataut urunan mereka. Karbohidrat memiliki keanekaragaman sifat dengan faktor pembeda yaitu ukuran molekulnya.
Monosakarida (gula sederhana) tidak dapat dihidrolisis menjadi molekul karbohidrat lebih kecil lagi. Monosakarida yang mengandung gugus aldehida dirujuk sebagai aldo(aldehida plus-osa). Monosakarida dapat membentuk ikatan dimer, trimer dan sebagainya. Dimer disebut jugadisakarida. Disakarida tersusun 2 satuan monosakarida. Contohnya : Maltosa 1,4’-α-2-D-glukopinose, selobiosa 1,4’-β-2-D-glukopinose dan laktosa : 1,4’-α-D-glukopinose dan β-D-fruktoforanase dihubungkan 1 ikatan 1,2’. Jika tersusun dari 2 sampai 8 monosakarida dirujuk oligosakarida. Jika lebih dari 8 monosakarida diperoleh dari proses hidrolisis maka disebut polisakarida, senyawa dimana molekul-molekulnya mengandung banyak satuan monosakarida yang dipersatukan dengan ikatan glukosida contonya: selulosa 1,4’-α –D-glukopinose, amilosa(pati) 1,4’-β-D-glukopinose dan amilopektin(ketin) 1,4’-α-2-D-glukopinose dengan percabangan 1,6’-α.

(RALPH dan JOAN,1992)

Saat ini terminasi karbohidrat yagn dipakai adalah senyawa polihidroksi aldehida atau keton dan biasa dikenal dengan nama gula. Karbohidrat dibagi menjadi 2 jenis : karbohidrat sederhana(monosakarida) dan karbohidrat kompleks(disakarida dan polisakarida).

Monosakarida mengandung gugus keton atau aldosa. Awalan aldo- dan keto- menunjukan jenis gugus aldehida atau keton di dalam suatu sakarida, sedangkan akhiran –osa menunjukkan karbohidrat. Jumlah atom karbon dalam suatu karbohidrat ditunjukkan dengan menggunakan tri, titra, penta, heksa, heksa dan seterusnya. Berdasarkan jumlah atom karbon asimetri pembentuknya. Monosakarida dapat dioksidasi dengan pereaksi Tollens, Br2/H2O , HNO3 dan HIO4. Disakarida adalah suatu karbohidrat yang jika dihidrolisis menghasilkan 2 molekul monosakarida seperti maltosa dapat mereduksi Fehling atau Tollens sehingga disebut gula pereduksi.

Polisakarida adalah senyawa yang terdiri dari ratusan bahkan ribuan monomer monosakarida di alam. Selulosa merupakan komponen utama kayu dan serat tanaman sedangkan katun yang berasal dari kapas merupakan selulosa meurni dengan rumus molekul (C5H10O5)n. Pati terdapat pada beras, singkong, gandum, jagung, kentang dan sebagainya. Terdiri dari 20% amilum dan 80% amilopektin. Glokogen mirip amilopektin tetapi lebih sedikit percabangannya. Sangat penting perannya bagi manusa dan binatang, yaitu sebagai cadangan energi bagi tubuhnya dan banyak disimpan pada hati dan jaringan otot yang jarang digunakan untuk bergerak atau beraktifitas.

(RISWIYANTO,2009).

Senyawa mono dan disakarida memiliki rasa manis, oleh karena itulah kedua jenis karbohidrat ini disebut gula. Sedangkan polisakarida tidak berasa manis karena molekulnya sedemikian besar hingga tidak dapat masuk ke dalam sel-sel tastebud yang terdapat pada permukaan lidah. Berbagai cara untuk menguji senyawa karbohidrat secara kualitatif , yaitu:

      Analisis kualitatif karbohidrat Karbohidrat merupakan senyawa metabolit primer selain protein dan lipid. Karbohidrat mempunyai peranan yang penting dalam kehidupan manusia, antara lain adalah sebagai sumber tenaga dan penghasil panas tubuh. Adanya karbohidrat dapat diidentifikasi dengan menggunakan berbagai macam metode. Inilah teori beberapa metode analisis kualitatif karbohidrat.

1. Uji Molisch
          Uji Molisch merupakan uji yang paling umum untuk karbohidrat. Uji Molisch sangat efektif untuk senyawa-senyawa yang dapat didehidrasi oleh asam pekat menjadi senyawa furfural yang terubstitusi, seperti hidroksimetilfurfural.

Warna yang terjadi disebabkan oleh kondensasi furfural atau derivatnya dengan alfa-naftol menghasilkan senyawa kompleks berwarna merah-ungu.
Thymol dapat dipakai sebagai pengganti alfa-naftol. Ia juga lebih stabil daripada alfa-naftol dan pada penyimpanan yang lama tidak berubah warna.
 
2. Uji Benedict
             Uji Benedict dan uji Barfoed keduanya berdasarkan resuksi Cu2+ menjadi Cu+. Pada proses reduksi kupri dalam suasana alkalis biasanya ditambahkan zat pengompleks seperti sitrat pada larutan Benedict atau tartrat pada larutan Fehling, hal ini dilakukan untuk mencegah pengendapan CuCO3 dalam larutan natrium karbonat pada Benedict, sedangkan pada Fehling untuk mencegah pengendapan Cu(OH)2 atau CuO dalam larutan natirum hidroksida. Produk oksidasi karbohidrat dalam larutan alkalis sangat kompleks dan banyak jumlahnya, belum semuanya dapat diidentifikasi yaitu berwarna hijau, merah, oranye, dan pembentukan endapan merah bata. Tidak seperti maltosa dan laktosa, sukrosa tidak dapat mereduksi Benedict, karena ia tidak memiliki gugus aldehida atau gugus keto bebas.

3. Uji Barfoed
Merupakan uji untuk membedakan karbohidrat golongan monosakarida dan disakarida . Prinsipnya adalah reduksi Cu2+ yang terdapat dalam pereaksi barfoed oleh gugus pereduksi pada monosakarida, dalam suasana asam. Reaksi positif ditunjukan dengan munculnya endapan merah orange.Komposisi pereaksi barfoed adalah : 48 g tembaga asetat, 50 ml asam laktat 85% air ad 1000 ml.

Dengan menggunakan reagen Barfoed yang mengandung koper asetat di dalam asam asetat, maka kita dapat juga membedakan monosakarida dan disakarida dengan jalan mengontrol kondisi-kondisi seperti pH dan waktu pemanasan.

4. Uji Seliwanoff
           Reaksi spesifik lainnya untuk uji karbohidrat tertentu adalah uji Seliwanoff dan uji Foulger. Reaksi Seliwanoff disebabkan perubahan fruktosa oleh asam klorida panas menjadi asam levulinat dan hidroksimetilfurfural. Selanjutnya kondensasi hidroksimetilfurfural dengan resorsinol menghasilkan senyawa kompleks berikut yang berwrna merah:

            Sukrosa yang mudah dihidrolisis menjadi glukosa dan fruktosa, memberi reaksi positif dengan uji Seliwanoff. Pada pendidihan lebih lanjut, aldosa-aldosa memberikan warna merah dengan reagen Seliwanoff, karena aldosa-aldosa tersebut diubah oleh HCl menjadi ketosa.
 
5. Uji Fenilhidrazin
Karbohidrat (kecuali manosa) yang memiliki gugus fungsional aldehid atau keton, membentuk osazon dengan fenilhidrazin. Glukosa dan fruktosa memberikan osazon yang sama karena monosakarida-monosakarida tersebut tidak mempunyai letak susunan gugus -H dan -OH yang sama pada atom akrbon 3, 4, 5, dan 6. Manosa tidak membentui osazon di dalam larutan air, tetapi mebentuk fenilhidrazin yang tidak larut.
 
6. Uji Iodin
         Uji iodin dapat digunakan untuk membedakan amilum dan glikogen. Iodin dapat bereaksi dengan amilum membentuk kompleks berwarna biru atau ungu. Uji iodin digunakan juga untuk medeteksi adanya pati ( suatu polisakarida ). Pada percobaan masing – masing larutan sampel ditambahkan dengan 2 tetes iodin, Iodin yang ditambahkan berfungsi sebagai  indikator suatu senyawa polisakarida. Uji Iodin dalam percobaan dilakukan dengan 3 kondisi yaitu kondisi, netral,asam dan basa,yaitu pada masing-masing tabung ditambahkan 2 tetes air pada tabung I ( netral ), 2 tetes HCl pada tabung II ( asam ) dan 2 tetes NaOH pada tabung III ( basa ). Kemudian ketiga tabung tersebut dipanaskan, setelah dipanaskan pada tabung I dengan kondisi netraldiperoleh (+2 tetes air) tidak terjadi perubahan warna, dengan basa (+ 2 tetes NaOH) tidak mengalami perubahan  warna (warna tetap keruh) atau dengan kata lain tidak terbentuk ikatan koordinasi antara ion iodida pada heliks. Hal ini disebabkan karena dengan basa I2 akan mengalami reaksi sebagai berikut:
3 I2 + 6 NaOH → 5 NaI + NaIO3 + 3 H2O
Sehingga pada larutan tidak terdapat I2 yang menyebabkan tidak terjadinya ikatan koordinasi sehingga warna tetap keruh, sedangkan dengan kondisi asam (+ 2 tetes  HCl) terjadi perubahan warna dari keruh menjadi bening.
 Pada kondisi asam NaI dan NaIO3 diubah menjadi I2 kembali  oleh asam klorida . Jadi pada kondisi asam-lah memberikan hasil uji terbaik. Dengan reaksi:
5 NaI + NaIO3 + 6 HCl → 3 I2 + 6 NaCl + 3 H2O


KESIMPULAN :

- Karbohidrat adalah polihidroksi aldehida atau keton dengan rumus empirik (CH2O)n, dapat diubah menjadi aldehida dan keton dengan cara hidrolisis.
-  Karbohidrat dibagi dalam tiga golongan yaitu : monosakarida, oligosakarida/disakarida, dan polisakarida.
-   Uji Molisch : uji untuk membuktikan adanya karbohidrat dengan memberikan warna ungu pada   larutan.
-  Uji Benedict : uji untuk membuktikan adanya gula pereduksi, dengan memberikan warna merah bata pada karbohidrat.
-    Uji Barfoed : uji untuk membedakan monosakarida dan disakarida.
- Uji Seliwanoff : prinsipnya berdasarkan konversi fruktosa menjadi asam levulinat dan hidroksimetil furfural oleh asam hidroklorida panas dan terjadi kondensasi hidroksimetilfurfural dengan resorsinol yang menghasilkan senyawa berwarna merah.
-  Uji Hidrolisis Pati : untuk mengetahui kelarutan amilum, dengan mereaksikan pati dan iodium yang akan membentuk ikatan kompleks berwarna biru.

Selasa, 12 Maret 2013

0

Karbohidrat



        KARBOHIDRAT yaitu senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. Terdiri atas unsur C, H, O dengan perbandingan 1 atom C, 2 atom H, 1 atom O. Secara umum definisi karbohidrat adalah senyawa organik yang mengandung atom Karbon, Hidrogen dan Oksigen, dan pada umumnya unsur Hidrogen dan oksigen dalam komposisi menghasilkan H2O. Di dalam tubuh karbohidrat dapat dibentuk dari beberapa asam amino dan sebagian dari gliserol lemak. Akan tetapi sebagian besar karbohidrat diperoleh dari bahan makanan yang dikonsumsi sehari-hari, terutama sumber bahan makan yang berasal dari tumbuh-tumbuhan.

Sumber karbohidrat nabati dalam glikogen bentuk glikogen, hanya dijumpai pada otot dan hati dan karbohidrat dalam bentuk laktosa hanya dijumpai di dalam susu. Pada tumbuh-tumbuhan, karbohidrat di bentuk dari basil reaksi CO2 dan H2O melalui proses foto sintese di dalam sel-sel tumbuh-tumbuhan yang mengandung hijau daun (klorofil). Matahari merupakan sumber dari seluruh kehidupan, tanpa matahari tanda-tanda dari kehidupan tidak akan dijumpai. Reaksi fotosintese sinar matahari :

6 CO2 + 6 H2O C6 H12 O6 + 6 O2

Pada proses fotosintesis, klorofil pada tumbuh-tumbuhan akan menyerap dan menggunakan enersi matahari untuk membentuk karbohidrat dengan bahan utama CO2 dari udara dan air (H2O) yang berasal dari tanah. Enersi kimia yang terbentuk akan disimpan di dalam daun, batang, umbi, buah dan biji-bijian.


Klasifikasi Karbohidrat:

1. Monosakarida : terdiri atas 3-6 atom C dan zat ini tidak dapat lagi dihidrolisis oleh larutan asam dalam air menjadi karbohidrat yang lebih sederhana.Karbohidrat yang paling sederhana (simple sugar), oleh karena tidak bisa lagi dihidrolisa. Monosakarida larut di dalam air dan rasanya manis, sehingga secara umum disebut juga gula. Penamaan kimianya selalu berakhiran -osa. berikut macam-macam monosakarida : dengan ciri utamanya memiliki jumlah atom C berbeda-beda :
triosa (C3), tetrosa (C4), pentosa (C5), heksosa (C6), heptosa (C7).
Triosa : Gliserosa, Gliseraldehid, Dihidroksi aseton
Tetrosa : threosa, Eritrosa, xylulosa
Pentosa : Lyxosa, Xilosa, Arabinosa, Ribosa, Ribulosa
Hexosa : Galaktosa, Glukosa, Mannosa, fruktosa
Heptosa : Sedoheptulosa

2. Disakarida : senyawanya terbentuk dari 2 molekul monosakarida yg sejenis atau tidak. dapat dihidrolisis oleh larutan asam dalam air sehingga terurai menjadi 2 molekul monosakarida.
hidrolisis : terdiri dari 2 monosakatida
sukrosa : glukosa + fruktosa (C 1-2)
maltosa : 2 glukosa (C 1-4)
trehalosa ; 2 glukosa (C1-1)
Laktosa ; glukosa + galaktosa (C1-4)

3. Oligosakarida :senyawa yang terdiri dari gabungan molekul2 monosakarida yang banyak gabungan dari 3 – 6 monosakarida
dihidrolisis : gabungan dari 3 – 6 monosakarida misalnya maltotriosa

4. Polisakarida : senyawa yang terdiri dari gabungan molekul- molekul  monosakarida yang banyak jumlahnya, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida. Polisakarida merupakan jenis karbohidrat yang terdiri dari lebih 6 monosakarida dengan rantai lurus/cabang.
Sumber TERKAIT

Macam-macam polisarida :

1. AMILUM/TEPUNG
rantai a-glikosidik (glukosa)n : glukosan/glukan  Amilosa (15 – 20%) : helix, tidak bercabang
Amilopektin (80 – 85%) : bercabang
Terdiri dari 24 – 30 residu glukosa,
Simpanan karbohidrat pada tumbuhan,
Tes Iod : biru
ikatan C1-4 : lurus
ikatan C1-6 : titik percabangan

2. GLIKOGEN  
Simpanan polisakarida binatang
Glukosan (rantai a) - Rantai cabang banyak
Iod tes : merah

3. INULIN  
pati pada akar/umbi tumbuhan tertentu,
Fruktosan
Larut air hangat
Dapat menentukan kecepatan filtrasi glomeruli.
Tes Iod negatif

4. DEKSTRIN  dari hidrolisis pati

5. SELULOSA   (serat tumbuhan)
Konstituen utama framework tumbuhan
tidak larut air - terdiri dari unit b
Tidak dapat dicerna mamalia (enzim untuk memecah ikatan beta tidak ada) - Usus ruminantia, herbivora ada mikroorganisme dapat memecah ikatan beta : selulosa dapat sebagai sumber karbohidrat.

6. KHITIN
polisakarida invertebrata

7. GLIKOSAMINOGLIKAN
karbohidrat kompleks
merupakan (+asam uronat, amina)
penyusun jaringan misalnya tulang, elastin, kolagen
Contoh : asam hialuronat, chondroitin sulfat

8. GLIKOPROTEIN
Terdapat di cairan tubuh dan jaringan
terdapat di membran sel
merupakan Protein + karbohidrat
Gula menunjukkan berbagai isomer
STEREOISOMER : senyawa dengan struktur formula sama tapi beda konfigurasi ruangnya
- Isomer D,L
- Cincin piranosa, furanosa
- Anomer a, b
- epimer (glukosa, galaktosa, manosa)
- Isomer aldosa, ketosa

Berikut Penjelasan Singkat langkah-langkah dalam metabolisme karbohidrat

1.GLIKOLISIS yaitu: dimana glukosa dimetabolisme menjadi piruvat (aerob) menghasilkan energi (8 ATP)atau laktat (anerob)menghasilkan (2 ATP).
selanjutnya Asetil-KoA --> siklus Krebs --> fosforilasi oksidatif --> rantai respirasi --> CO2 + H2O (30 ATP.

2. GLIKOGENESIS yaitu: proses perubahan glukosa menjadi glikogen. Di Hepar/hati berfungsi: untuk mempertahankan kadar gula darah. sedangkan di Otot bertujuan: kepentingan otot sendiri dalam membutuhkan energi.

3. GLIKOGENOLISIS yaitu : proses perubahan glikogen menjadi glukosa. atau kebalikan dari GLIKOGENESIS.

4. JALUR PENTOSA FOSFAT yaitu : hasil ribosa untuk sintesis nukleotida, asam nukleat dan equivalent pereduksi (NADPH) (biosintesis asam lemak dan lainnya.)

5. GLUKONEOGENESIS : senyawa non-karbohidrat (piruvat, asam laktat, gliserol, asam amino glukogenik) menjadi --> glukosa.

6. TRIOSA FOSFAT yaitu: bagian gliseol dari TAG (lemak)

7. PIRUVAT & SENYAWA ANTARA SIKLUS KREBS : untuk sintesis asam amino --> Asetil-KoA --> untuk sintesis asam lemak & kolesterol --> steroid.



  • UJI KARBOHIDRAT



   1. UJI TOLLENS

Uji tollens merupakan salah satu uji yang digunakan untuk membedakan senyawa aldehid dan senyawa keton.
Dalam percobaan ini yang pertama dilakukan adalah membuat Pereaksi tollens yaitu dengan Mencampurkan 1 ml AgNO3 kemudian 2 tetes NaOH 10 % ( tetes demi tetes) sehingga menghasilkan pengoksidasi ringan yaitu larutan basa dari perak nitrat. Untuk mencegah pengendapan ion perak sebagai oksida pada suhu tinggi, maka ditambahkan beberapa tetes larutan amonia, amonia membentuk kompleks larut air dengan ion perak.
Pada praktikum ini menggunakan delapan jenis sampel yang diuji apakah dia termasuk ke dalam senyawa aldehid atau senyawa keton. Sampel-sampel tersebut antara lain Larutan Glukosa, Larutan Fruktosa, Larutan Maltosa, Larutan Laktosa, Larutan Amilum, Larutan Gula, Larutan Madu, dan Larutan Susu.
Pada percobaan terhadap Larutan gula, larutan maltosa, larutan fruktosa, larutan laktosa, larutan glukosa dan madu pada saat ditambahkan dengan pereaksi tollens terjadi perubahan warna larutan menjadi coklat keruh dan tebentuk endapan berwarna hitam. Kemudian dipanaskan terjadi lagi perubahan yaitu warna larutan abu-abu keruh dan terbentuknya endapan cermin perak pada dinding tabung reaksi dan endapan berwarna kehitaman, setelah larutan di dinginkan warna larutan berubah lagi menjadi bening kehijauan dan endapannya berwarna hitam. Dari pengamatan ini dapat dinyatakan bahwa keenam larutan ini merupakan senyawa aldehid, karena pada dasar tabung reaksi mengkilat yang menunjukkan adanya endapan cermin perak.Endapan cermin perak ini berasal dari Gugus aktif pada pereksi tollens yaitu Ag2O yang bila tereduksi akan menghasilkan endapan perak. Endapan perak ini akan menempel pada dinding tabung reaksi yang akan menjadi cermin perak. Aldehid dioksidasi menjadi anion karboksilat . ion Ag+  dalam reagensia tollens direduksi  menjadi logam Ag. Uji positif ditandai dengan terbentuknya cermin perak pada dinding dalam tabung reaksi . reaksi dengan pereaksi tollens mampu meng ubah ikatan C-H pada aldehid menjadi ikatan C-O.
Pada percobaan terhadap larutan susu dan amilum pada saat ditambahkan pereaksi tollens terjadi perubahan warna pada susu yang awalnya berwarna putih susu berubah menjadi coklat dan terbentuk endapan abu – abu sedangkan pada amilum yang awalnya bening berubah menjadi warna putih susu dan terbentuk endapan abu –abu, kemudian pada saat dipanaskan warna larutan berubah lagi warna larutan  dan endapan hitam  sedangkan pada larutan amilum larutan menjadi bening dan endapan ungu. Pada kedua larutan ini tidak tebentuk endapan cermin perak yang terbentuk hanya endapan berwarna hitam pada susu dan ungu pada amilum.
Dari pengamatan ini dapat dinyatakan bahwa kedua larutan ini termasuk kedalam senyawa keton karena tidak menghasilkan endapan cermin perak. Susu dan amilum tidak dapat membentuk cermin perak karena tidak mempunyai atom hidrogen yang terikat pada gugus karbonnya. Kedua tangan gugus karbonnya sudah mengikat dua gugus alkil sehingga aseton tidak mengalami oksidasi ketika ditambah pereaksi tollens dan dipanaskan.


2. UJI IODIN

Uji iodin digunakan untuk medeteksi adanya pati ( suatu polisakarida ). Pada percobaan masing – masing larutan sampel ditambahkan dengan 2 tetes iodin, Iodin yang ditambahkan berfungsi sebagai  indikator suatu senyawa polisakarida. Uji Iodin dalam percobaan dilakukan dengan 3 kondisi yaitu kondisi, netral,asam dan basa,yaitu pada masing-masing tabung ditambahkan 2 tetes air pada tabung I ( netral ), 2 tetes HCl pada tabung II ( asam ) dan 2 tetes NaOH pada tabung III ( basa ). Kemudian ketiga tabung tersebut dipanaskan, setelah dipanaskan pada tabung I dengan kondisi netral diperoleh (+2 tetes air) tidak terjadi perubahan warna, dengan basa (+ 2 tetes NaOH) tidak mengalami perubahan  warna (warna tetap keruh) atau dengan kata lain tidak terbentuk ikatan koordinasi antara ion iodida pada heliks. Hal ini disebabkan karena  dengan basa I2 akan mengalami reaksi sebagai berikut:
3 I2 + 6 NaOH → 5 NaI + NaIO3 + 3 H2O
Sehingga pada larutan tidak terdapat I2 yang menyebabkan tidak terjadinya ikatan koordinasi sehingga warna tetap keruh, sedangkan dengan kondisi asam (+ 2 tetes  HCl)  terjadi perubahan warna dari keruh menjadi bening.
 Pada kondisi asam NaI dan NaIO3 diubah menjadi I2 kembali  oleh asam klorida . Jadi pada kondisi asam-lah memberikan hasil uji terbaik. Dengan reaksi:
5 NaI + NaIO3 + 6 HCl → 3 I2 + 6 NaCl + 3 H2O



3. UJI FEHLING

• Perekasi Fehling adalah oksidator lemah yang merupakan pereaksi khusus untuk mengenali aldehida.
• Pereaksi Fehling terdiri dari dua bagian, yaitu Fehling A dan Fehling B. Fehling A adalah larutan CuSO4, sedangkan Fehling B merupakan campuran larutan NaOH dan kalium natrium tartrat. Pereksi Fehling dibuat dengan mencampurkan kedua larutan tersebut, sehingga diperoleh suatu larutan yang berwarna biru tua. Dalam pereaksi Fehling, ion Cu2+ terdapat sebagai ion kompleks. Pereaksi Fehling dapat dianggap sebagai larutan CuO.
Dalam pereaksi ini ion Cu2+ direduksi menjadi ion Cu+ yang dalam suasana basa akan diendapkan sebagai Cu2O. Dengan larutan glukosa 1%, pereaksi Fehling menghasilkan endapan berwarna merah bata, sedangkan apabila digunakan larutan yang lebih encer misalnya larutan glukosa 0,1%, endapan yang terjadi berwarna hijau kekuningan.

Uji Fehling

• Digunakan untuk menunjukkan adanya karbohidrat reduksi.
• Uji positif ditandai dengan warna merah bata


Musik

Free Music Online
Free Music Online

free music at divine-music.info

Cursor

Blue Arrow, Bow Tie Hearts Blinking, Letter J

About Me

Diberdayakan oleh Blogger.